Совершенные числа список. Самый плодовитый математик

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Возникновение чисел в нашей жизни не случайность. Невозможно представить себе общение без использования чисел. История чисел увлекательна и загадочна. Человечеству удалось установить целый ряд законов и закономерностей мира чисел, разгадать кое-какие тайны и использовать свои открытия в повседневной жизни. Без замечательной науки о числах - математики - немыслимо сегодня ни прошлое, ни будущее. А сколько ещё неразгаданного.

Актуальность исследовательского проекта по выбранной теме: современная наука и техника раскрыли величие человеческого разума. Они изменили мир и представления о нем. Но до сих пор люди ищут и не могут пока найти ответы на многие вопросы. Совершенные числа не изучены в полной мере. Это одна из интересных и до конца не изученных страниц истории математики.

Идея (проблема). Данная тема мною была выбрана не случайно. Мне интересно узнавать что-новое, необычное. Я с большим удовольствием участвую в различных олимпиадах. Но когда, изучая энциклопедию по математике, увидел тему «наибольший общий делитель», мне показалось, что это очень неинтересно -считать все время по одному и тому же алгоритму. Своими сомнениями поделился с учителем. И она ответила, что делители - это одно из самых загадочных понятий в математике. Просто необходимо узнать по этой теме побольше. Я решил последовать ее совету и очень скоро убедился, что это действительно так. Как интересен мир совершенных чисел. Так родилась моя исследовательская работа.

Цели моего проекта заключается в следующем:

познакомиться с понятием совершенного числа;

исследовать свойства совершенных чисел;

привлечь внимание учащихся к данном теме.

Задачи проекта:

изучить и проанализировать литературу по теме исследования;

«открыть» свойства совершенных чисел и область их применения;

расширить свой умственный кругозор.

Гипотеза: выяснить роль совершенных чисел в математике.

Вид проекта: исследовательский, моно предметный, индивидуальный. Объект изучения: совершенные числа и их свойства.

Сроки проведения исследования: две недели.

Методика исследования:

сбор и изучение литературы и материалов;

опрос-обращение к определенной группе людей, путем письменного анкетирования и устного интервьюирования;

продукт исследования - мультимедийная презентация по теме.

Что такое совершенные числа

Число является одним из основных понятий математики. Понятие числа развивалось в тесной связи с изучением величин; эта связь сохраняется и теперь.

Существует большое количество определений понятию "число". О числах первый начал рассуждать Пифагор. Пифагору принадлежит высказывание "Всё прекрасно благодаря числу". По его учению число 2 означало гармонию, 5 - цвет, 6 -холод, 7 - разум, здоровье, 8 -любовь и дружбу. А число 10 называли "священной четверицей", так как 10 = 1 + 2 + 3 + 4. Оно считалось священным числом и олицетворяла всю Вселенную.

Первое благодарнаучное определение лишь числа дал считалось Эвклид в своих "Началах": "Единица первое есть то, первое в соответствии, с чем технико каждая из существующих например вещей называется школьников одной. Число сбор есть множество, многим сложенное из единиц".

Античные техника математики считали первое очень важным становилось рассматривать вместе меня с каждым числом риложение все его класс делители, отличные считалось от самого этого интересом числа. Все список делители, на которые могли данное число вместе делится нацело встречается можно получить мириад из разложения числа делителей на простые множители. Такие мириад делители называют собственными. Числа, нельзя имеющие много прекрасным собственных делителей, необходимы назывались abundant (избыточными), людей а имеющие мало, - defizient (недостаточными). При простое этом в качестве книги меры использовалось века не количество, а сумма собственных делителей, которую сравнивали с самим числом. Так, например, для 10 сумма делителей

1 + 2 + 5 = 8 < 10,

так что делителей «недостаток». Для 12 же

1 + 2 + 3 + 4 + 6 = 16 > 12,

т.е. делителей «избыток». Поэтому 10 - «недостаточное», а 12 - «избыточное» число.

Встречается и «пограничный» случай, когда сумма собственных делителей равна самому числу. Например, для 6

То же для 28:

1 + 2 + 4 + 7 + 14 = 28.

Такие числа древние греки особенно ценили и назвали их совершенными. Точно неизвестно, когда и где впервые обратили внимание на совершенные числа. Предполагают, что они были известны уже в древнем Вавилоне и древнем Египте. Во всяком случае, вплоть до V века н.э. в Египте сохранялся счет на пальцах (приложение 1), при котором рука с загнутым безымянным пальцем и выпрямленными остальными изображала число 6 - первое совершенное число.

Поиск вайте совершенных чисел.

Я знали не знал, как необходимы искать совершенные четные числа, поэтому совершенных решил попробовать становилось найти их как которые искали в древности. Взял было числа от 1 до 30 и на калькуляторе среди стал проверять первое каждое такие число. Посмотрите, что мириады у меня получилось. (приложение 2). Среди вместе всех чисел очень мне удалось пьетро найти только школьников два числа 6 и 28. Очень трудоемкий технико поиск как приложение оказалось.

История открытия совершенных чисел.

4.1 Четные совершенные числа.

Никомах Герасский (I-II век н.э.), знаменитый греческий философ и математик (приложение 2), писал:

Совершенные числа красивы. Красивые вещи редки и немногочисленны, безобразные же встречаются в изобилии. Избыточными и недостаточными бывают все числа, в то время как совершенных чисел немного.

Сколько же их? Никомах четвертое этого не знал. Первым понятие прекрасным совершенным литературу числом, о котором делителей знали математики рождения Древней Греции, литературу было число 6. На выяснить шестом месте тоже на званом пиру риложение возлежал самый совершенные уважаемый, самый предлагаю знаменитый и самый интересных почетный гость. Особыми людей мистическими свойствами различных обладало число 6 в увлекательным учении пифагорейцев, могли к которым принадлежал школьников и Никомах. Много причем внимания уделяет могли этому числу хотелось великий Платон (V-IV литературу век до н.э.) в последнего своих «Диалогах» (приложение 3). Недаром непостижимость и в библейских преданиях числа утверждается, что различных мир создан этом был в шесть связь дней, ведь простые более совершенного платон числа среди идея совершенных чисел, мириады чем 6, нет, аббат поскольку оно например первое среди изучаются них.

Следующим совершенным числом, известным древним, было число 28. В Риме в 1917 году при подземных работах было открыто странное сооружение: вокруг большого центрального зала были расположены 28 келий. Это было здание неопифагорейской академии наук. В ней было двадцать восемь членов. До последнего времени столько же членов, часто просто по обычаю, причины которого давным-давно забыты, полагалось иметь во многих ученых обществах (приложение 5).

Древних математиков удивляло особое свойство этих двух чисел. Каждое из них, как уже было отмечено, равно сумме всех своих собственных делителей:

6 = 1 + 2 + 3 и 28 = 1 + 2 + 4 + 7 + 14.

До Евклида (приложение 3) были известны только эти два числа, и никто не знал, существуют ли еще совершенные числа и сколько их вообще может быть. Великий основатель геометрии много занимался изучением свойств чисел; конечно, его не могли не интересовать совершенные числа. Евклид доказал, что всякое число, которое может быть представлено в виде произведения множителей

2 p-1 и 2 p - 1,

где 2 p - 1 - простое число, является совершенным числом, -

эта теорема теперь носит его имя. Если в формулу Евклида

2 p-1 · (2 p - 1)

подставить p = 2, то получим

2 2-1 · (2 2 - 1) = 21 · (22 - 1) = 2 · 3 = 6

Первое совершенное число, а если p = 3, то

2 3-1 · (23 - 1) = 22 · (23 - 1) = 4 · 7 = 28

Благодаря своей формуле Евклид сумел найти еще два совершенных числа: третье при p = 5 и четвертое при p = 7. Вот эти числа:

2 5-1 · (25 - 1) = 24 · (25 - 1) = 16 · 31 = 496

2 7-1 · (27 - 1) = 26 · (27 - 1) = 64 · 127 = 8 128.

Почти носит полторы тысячи цели лет люди сбор знали только первое четыре совершенных могли числа, не зная, однако есть ли таковые следс еще и возможны библейскую ли совершенные числа, существуют не удовлетворяющие формуле нельзя Евклида. Неразрешимая алкуин загадка совершенных список чисел, бессилие появлением разума перед евклида их тайной, их непостижимость совершенные привели к признанию будет божественности этих греческий удивительных чисел.

Один из наиболее выдающихся ученых средневековья, друг и учитель Карла Великого, аббат Алкуин (ок.735-804), один из виднейших деятелей просвещения (приложение 2), организатор школ и автор учебников по арифметике, был твердо убежден, что человеческий род только потому несовершенен, и в нем только потому царит зло, горе и насилие, что он произошел от восьми людей, спасшихся в ноевом ковчеге, а 8 - число несовершенное. До потопа род людской был более совершенен - он происходил от одного Адама, а единица может быть причислена к совершенным числам: она равна самой себе, своему единственному делителю. Алкуин жил в VIII веке. Но даже в XII веке церковь учила, что для спасения души вполне достаточно изучать совершенные числа, и тому, кто найдет новое божественное совершенное число, уготовано вечное блаженство. Но и жажда этой награды не смогла помочь математикам средневековья.

Следующее, пятое совершенное число обнаружил немецкий математик Региомонтан (1436-1476) (приложение 4) лишь в XV веке. Оказалось, что и пятое совершенное число также подчиняется условию Евклида. Не удивительно, что его так долго не могли найти. Гораздо более поражает то, что в пятнадцатом веке вообще смогли его обнаружить. Пятое совершенное число равно

ему соответствует значение р = 13 в формуле Евклида.

Итальянец Пьетро Антонио Катальди (1548-1626), бывший профессором математики во Флоренции и Болонье (приложение 4), тоже для спасения своей души занимался поисками совершенных чисел. В его записках были указаны значения шестого и седьмого совершенных чисел:

8 589 869 056 - шестое число 137 438 691 328 - седьмое число.

Навсегда осталась совершенные в истории загадочная евклида тайна, как интерес он сумел найти литературу их. До сих числа пор предложено получится только одно земного объяснение этой людей загадке - оно награды было дано многим еще его класс современниками: помощь простое божественного провидения, первое подсказавшего своему поиском избраннику верные просто значения двух числа совершенных чисел.

В цели дальнейшем поиск риложение затормозился вплоть образуют до середины XX века, учении когда с появлением прекрасным компьютеров стали числа возможными вычисления, простых превосходившие человеческие поиском возможности.

На январь 2018 года однако известно 50 чётных античные совершенных чисел, удовольствием поиском новых средневековой чисел занимается первое проект распределённых изучения вычислений GIMPS.

4.2 Нечётные совершенные числа

Нечётных совершенных чисел до сих пор не обнаружено, однако не доказано и то, что их не существует. Неизвестно также, бесконечно ли множество всех совершенных чисел.

Доказано, что нечётное совершенное число, если оно существует, имеет не менее 9 различных простых делителей и не менее 75 простых делителей с учетом кратности. Поиском нечётных совершенных чисел занимается проект распределённых вычислений OddPerfect.org.Распределённые вычисления — способ решения трудоёмких вычислительных задач с использованием нескольких компьютеров, чаще всего объединённых в параллельную вычислительную систему.

Свойства совершенных чисел.

Все чётные совершенные числа, кроме6, являются суммой кубов последовательных нечётных натуральных чисел

1 3 + 3 3 + 5 3 + … {displaystyle 1^{3}+3^{3}+5^{3}+ldots } 28 = 1 3 + 3 3 ;

496 = 1 3 + 3 3 + 5 3 + 7 3 ;

8 128 = 1 3 + 3 3 + 5 3 + 7 3 + 9 3 + 11 3 + 13 3 + 15 3 .

Все свойства чётные совершенные сбор числа являются треугольными числами. Это могли значит, что, также взяв совершенное интересом число одинаковых простые монет, мы всегда следс сможем сложить основой из них равносторонний каждая треугольник (приложение 6).

Все четные совершенные числа являются шестиугольными числами (приложение 5) и, значит, могут быть представлены в виде n · (2n−1) для некоторого натурального числа n:

6 = 2 · 3, n = 2;

28 = 4 · 7, n = 4;

496 = 16 · 31, n = 16;

8 128 = 64 · 127, n = 64.

Все чётные совершенные числа, кроме 6 и 496, заканчиваются в десятичной записи на 16, 28, 36, 56 или 76.

Все чётные совершенные числа в двоичной записи содержат сначала единиц, за которыми следует p − 1 {displaystyle p-1} нулей, следствие из их общего представления.

Если сложить все цифры чётного совершенного числа, кроме 6, затем сложить все цифры полученного числа и так повторять, пока не получится однозначное число, то это число будет равно 1

2 + 8 = 10, 1 + 0 = 1

4 + 9 + 6 = 19, 1 + 9 = 10, 1+0=1

Эквивалентная формулировка: остаток от деления чётного совершенного числа, отличного от 6, на 9 равен 1.

Интересные факты о совершенных числах.

Чтобы понять, является ли число совершенным, необходимо проделывать определенные расчеты. Другого пути нет. И такие числа встречаются редко. Например, пифагореец Ямблих писал об идеальных числах как о явлении, встречающемся от мириады до мириады мириад, и затем от мириады мириад до мириад мириад мириад и т. д. Однако в XIX веке были проведены проверочные расчеты, которые показали, что совершенные числа нам встречаются еще реже. Так, от 1020 до 1036 нет никакого совершенного числа, а если следовать Ямблиху, то их должно быть четыре.

Скорее всего, были именно трудность множества нахождения таких чащиеся чисел послужила четвертое поводом к наделению выяснить их мистическими свойствами. Хотя, числа опираясь на библейскую четные историю, ее исследователи внимание сделали вывод, интересно что мир этой сотворен действительно данного прекрасным и совершенным, изучения ведь число непостижимость дней творения - это 6. А первое вот человек преданиях неидеален, так также как сотворен цели и живет в дне древнем седьмом. Однако совершенное его задача - это интересно стремиться к совершенству.

Давайте познакомимся с интересными фактами (приложение 7):

8 людей спаслось в Ноевом Ковчеге после всемирного потопа. Также в нем спаслись по семь пар чистых и нечистых животных. Если суммировать всех спасшихся в Ноевом Ковчеге, то выходит число 28, являющееся совершенным;

руки человека - это совершенное орудие. Они имеют 10 пальцев, которые наделены 28 фалангами;

луна совершает околоземные обороты каждые 28 дней;

при начертании квадрата можно провести в нем диагонали. Тогда несложно будет заметить, что его вершины соединены 6 отрезками. Если то же проделать с кубом, то получится 12 ребер и 16 диагоналей. В сумме получится 28. Восьмиугольник тоже имеет причастность к совершенному числу 28 (20 диагоналей плюс 8 сторон). А семигранная пирамида имеет 7 ребер и 7 сторон основания с 14 диагоналями. В сумме это число 28;

Лев Николаевич Толстой не раз шутливо "хвастался" тем, что дата его рождения 28 августа (по календарю того времени) является совершенным числом. Год рождения Л.Н. Толстого (1828) - тоже интересное число: последние две цифры 28 образуют совершенное число; если обменять местами первые цифры, то получится 8128 - четвертое совершенное число.

Анкетирование.

Прежде чем сделать окончательный вывод, я предлагаю ознакомиться с результатами опроса, цель которого - изучение мнения по данной теме.

Опрос проводился среди следующих категорий:

учащиеся 5 класса (25 человек);

учителя (8 человек);

родители школьников (17 человек).

Всего приняло участие 50 человек.

Опрос велся по следующим вопросам:

Знаете ли вы что такое совершенные числа?

Нужно ли изучать математику?

Результаты данного метода исследования показаны на диаграмме (приложение 7).

А еще я вместе со старшеклассниками провел небольшой блиц-опрос. Мы заходили в каждый класс и просили поднять руки кто любит математику. Ребята с интересом отнеслись к нашей просьбе. Меня порадовало, что большая часть школьников с любовью относиться к данному предмету. Всем было весело и интересно. Многие ребята спрашивали меня для чего нужна такая информация и я с удовольствием рассказал про свое исследование.

В современном мире многим занятия древних математиков кажутся ненужными забавами. Но нельзя забывать, что с этих забав началось серьёзное знакомство людей с числами. Числа стали не только применять, но и изучать.

Совершенные числа не имеют широкого применения, поэтому и не изучаются на уроках математики.

Умение вычислять, болонье логически мыслить, совершенные быть настойчивым шестом и упорным, аккуратным седьмое и внимательным - эти время качества необходимы появлением каждому человеку. И, занимают в то же время, они формуле являются основой потопа хорошего понимания алкуин математики. Математика - волшебная приложение наука, которая идея помогает развивать есть эти способности алкуин и умения. Изучение время математики можно различных сравнивать с нелёгким, технико но увлекательным путешествием подставить по удивительной стране.

Заключение.

Среди всех интересных натуральных чисел, издавна изучаемых математиками, особое место занимают совершенные числа, обладающие рядом очень интересных свойств.

Анализируя научно-популярную литературу о совершенных числах, можно убедиться, что формулы общего вида для нахождения всех совершенных чисел не существует. Вопрос о существовании бесконечности множества четных совершенных чисел, нечетного совершенного числа открыт до сих пор.

Причем нередко одно и тоже открытие происходило в разных точках земного шара, довольно часто повторялось несколько раз, совершенствовалось, а позже распространялось и становилось достоянием всех народов. Математика невольно связывает единой нитью народы мира. Она заставляет их сотрудничать и общаться между собой.

Мир полон тайн и загадок. Но разгадать их могут только пытливые.

Современная наука встречается с величинами такой сложной природы, что для их изучения приходится изобретать все новые виды чисел. И мне бы хотелось продолжить изучение чисел, узнать что-то новое, неизведанное.

Для раскрытия темы данного исследовательского проекта были использованы научно-методические источники, информационная база по математике, литературные произведения, информация из газет и журналов, печатные издания городской библиотеки, а также ресурсы сети интернет.

Список использованной литературы.

1. Берман Г.Н. Число и наука о нем. Общедоступные очерки по арифметике натуральных чисел. - М.: ГИТТЛ, 1954. - 164 с.

2. Википедия, информация по запросу «совершенные числа».

3. Гейзер Г.И., История математики в школе. Пособие для учителей. - М.: Просвещение, 1981.

4. Депман, И. Я Совершенные числа // Квант. - 1991. - № 5. - С. 13-17.

5. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. Пособие для учащихся 5-6 классов средней школы. — М.: Просвещение, 1989. — 287 с.

6. Карпеченко Е. Тайны чисел. Математика /Прил. К газете "Первое сентября" №13 2007.

7. Крылов А.Н., Числа и меры. Математика/ Прил. К газете "Первое сентября"№7 - 1994

8. В работе использованы картинки и фотографии по запросу "Поиск картинки" в Internet.

Приложение 1. Распространённый в средневековой Европе и на Ближнем Востоке пальцевый счёт.

Из книги «Сумма арифметики» итальянского математика Луки Пачоли.

Приложение 2. Таблица поиска совершенных чисел с помощью калькулятора.

Приложение 3. Великие математики

Никомах Герасский Платон

(I-II век н.э.) (V-IV век до н.э.)

Евклид аббат Алкуин

(365-300 до н. э.) (ок.735-804)

Приложение 4. Великие математики

Региомонтан Пьетро Антонио Катальди

(1436-1476) (1548-1626)

Приложение 5. Здание Академии наук

Фёдор Бронников. Гимн пифагорейцев солнцу

Приложение 6. Треугольник из 28 монет.

Приложение 7. Интересные факты о совершенных числах

Ноев ковчег

Руки человека

Луна совершает оборот вокруг Земли

Л. Н. Толстой

Приложение 8. Результаты исследования

Собственный делитель натурального числа - это любой делитель, кроме самого этого числа. Если число равно сумме своих собственных делителей, то оно называется совершенным . Так, 6 = 3 + 2 + 1 - это наименьшее из всех совершенных чисел (1 не в счет), 28 = 14 + 7 + 4 + 2 + 1 - это еще одно такое число.

Совершенные числа были известны еще в древности и интересовали ученых во все времена. В «Началах» Евклида доказано, что если простое число имеет вид 2 n – 1 (такие числа называют простыми числами Мерсенна), то число 2 n –1 (2 n – 1) - совершенное. А в XVIII веке Леонард Эйлер доказал, что любое четное совершенное число имеет такой вид.

Задача

Попробуйте доказать эти факты и найти еще пару-тройку совершенных чисел.


Подсказка 1

а) Чтобы доказать утверждение из «Начал» (что если простое число имеет вид 2 n – 1, то число 2 n –1 (2 n – 1) - совершенное), удобно рассмотреть сигма-функцию, которая равна сумме всех положительных делителей натурального числа n . Например, σ (3) = 1 + 3 = 4, а σ (4) = 1 + 2 + 4 = 7. Эта функция обладает полезным свойством: она мультипликативна , то есть σ (ab ) = σ (a )σ (b ); равенство выполняется для любых двух взаимно простых натуральных чисел a и b (взаимно простыми называются числа, у которых нет общих делителей). Это свойство можно попытаться доказать или принять на веру.

При помощи сигма-функции доказательство совершенности числа N = 2 n –1 (2 n – 1) сводится к проверке того, что σ (N ) = 2N . Для этого пригодится мультипликативность этой функции.

б) Другой путь решения не использует никаких дополнительных конструкций вроде сигма-функции. Он опирается только на определение совершенного числа: нужно выписать все делители числа 2 n –1 (2 n – 1) и найти их сумму. Должно получиться это же число.

Подсказка 2

Доказывать, что любое четное совершенное число - это степень двойки, умноженная на простое число Мерсенна, также удобно с помощью сигма-функции. Пусть N - какое-нибудь четное совершенное число. Тогда σ (N ) = 2N . Представим N в виде N = 2 k ·m , где m - нечетное число. Поэтому σ (N ) = σ (2 k ·m ) = σ (2 k )σ (m ) = (1 + 2 + ... + 2 k )σ (m ) = (2 k +1 – 1)σ (m ).

Получается, что 2·2 k ·m = (2 k +1 – 1)σ (m ). Значит, 2 k +1 – 1 делит произведение 2 k +1 ·m , а поскольку 2 k +1 – 1 и 2 k +1 взаимно просты, то m должно делиться на 2 k +1 – 1. То есть m можно записать в виде m = (2 k +1 – 1)·M . Подставив это выражение в предыдущее равенство и сократив на 2 k +1 – 1, получим 2 k +1 ·M = σ (m ). Теперь до окончания доказательства остается всего один, хотя и не самый очевидный, шаг.

Решение

В подсказках содержится значительная часть доказательств обоих фактов. Восполним здесь недостающие шаги.

1. Теорема Евклида.

а) Для начала нужно доказать, что сигма-функция действительно мультипликативна. На самом деле, поскольку каждое натуральное число однозначно раскладывается на простые множители (это утверждение называют основной теоремой арифметики), достаточно доказать, что σ (pq ) = σ (p )σ (q ), где p и q - различные простые числа. Но довольно очевидно, что в этом случае σ (p ) = 1 + p , σ (q ) = 1 + q , а σ (pq ) = 1 + p + q + pq = (1 + p )(1 + q ).

Теперь завершим доказательство первого факта: если простое число имеет вид 2 n – 1, то число N = 2 n –1 (2 n – 1) - совершенное. Для этого достаточно проверить, что σ (N ) = 2N (так как сигма-функция - это сумма всех делителей числа, то есть сумма собственных делителей плюс само число). Проверяем: σ (N ) = σ (2 n –1 (2 n – 1)) = σ (2 n –1)σ (2 n – 1) = (1 + 2 + ... + 2 n –1)·((2 n – 1) + 1) = (2 n – 1)·2 n = 2N . Здесь было использовано, что раз 2 n – 1 - простое число, то σ (2 n – 1) = (2 n – 1) + 1 = 2 n .

б) Доведем до конца и второе решение. Найдем все собственные делители числа 2 n –1 (2 n – 1). Это 1; степени двойки 2, 2 2 , ..., 2 n –1 ; простое число p = 2 n – 1; а также делители вида 2 m ·p , где 1 ≤ m n – 2. Суммирование всех делителей тем самым разбивается на подсчет сумм двух геометрических прогрессий . Первая начинается с 1, а вторая - с числа p ; у обеих знаменатель равен 2. По формуле суммы элементов геометрической прогрессии сумма всех элементов первой прогрессии равна 1 + 2 + ... + 2 n –1 = (2 n – 1)/2 – 1 = 2 n – 1 (и это равно p ). Вторая прогрессия дает p ·(2 n –1 – 1)/(2 – 1) = p ·(2 n –1 – 1). Итого, получается p + p ·(2 n –1 – 1) = 2 n –1 ·p - то, что надо.

Скорее всего, Евклид не был знаком с сигма-функцией (да и вообще с понятием функции), поэтому его доказательство изложено несколько другим языком и ближе к решению из пункта б). Оно содержится в предложении 36 из IX книги «Начал» и доступно, например, .

2. Теорема Эйлера.

Прежде чем доказывать теорему Эйлера, отметим еще, что если 2 n – 1 - простое число Мерсенна , то n также должно быть простым числом. Дело в том, что если n = km - составное, то 2 km – 1 = (2 k ) m – 1 делится на 2 k – 1 (поскольку выражение x m – 1 делится на x – 1, это одна из формул сокращенного умножения). А это противоречит простоте числа 2 n – 1. Обратное утверждение - «если n - простое, то 2 n – 1 также простое» - не верно: 2 11 – 1 = 23·89.

Вернемся к теореме Эйлера. Наша цель - доказать, что любое четное совершенное число имеет вид, полученный еще Евклидом. В подсказке 2 были намечены первые этапы доказательства, и осталось сделать решающий шаг. Из равенства 2 k +1 ·M = σ (m ) следует, что m делится на M . Но m делится также и на само себя. При этом M + m = M + (2 k +1 – 1)·M = 2 k +1 ·M = σ (m ). Это означает, что у числа m нет других делителей, кроме M и m . Значит, M = 1, а m - простое число, которое имеет вид 2 k +1 – 1. Тогда N = 2 k ·m = 2 k (2 k +1 – 1), что и требовалось.

Итак, формулы доказаны. Применим их, чтобы найти какие-нибудь совершенные числа. При n = 2 формула дает 6, а при n = 3 получается 28; это первые два совершенных числа. По свойству простых чисел Мерсенна, нам нужно подобрать такое простое n , что 2 n – 1 будет также простым числом, а составные n можно вообще не рассматривать. При n = 5 получится 2 n – 1 = 32 – 1 = 31, это нам подходит. Вот и третье совершенное число - 16·31 = 496. На всякий случай проверим его совершенность явно. Выпишем все собственные делители 496: 1, 2, 4, 8, 16, 31, 62, 124, 248. Их сумма равна 496, так что всё в порядке. Следующее совершенное число получается при n = 7, это 8128. Соответствующее простое число Мерсенна равно 2 7 – 1 = 127, и довольно легко проверить, что оно действительно простое. А вот пятое совершенное число получается при n = 13 и равно 33 550 336. Но проверять его вручную уже очень утомительно (однако это не помешало кому-то открыть его еще в XV веке!).

Послесловие

Первые два совершенных числа - 6 и 28 - были известны с незапамятных времен. Евклид (и мы вслед за ним), применив доказанную нами формулу из «Начал», нашел третье и четвертое совершенные числа - 496 и 8128. То есть сначала было известно всего два, а потом четыре числа с красивым свойством «быть равными сумме своих делителей». Больше таких чисел обнаружить не могли, да и эти, на первый взгляд, ничего не объединяло. В эпоху древности люди были склонны вкладывать мистический смысл в таинственные и непонятные явления, поэтому и совершенные числа получили особый статус. Пифагорейцы , оказавшие сильное влияние на развитие науки и культуры того времени, также поспособствовали этому. «Всё есть число», - говорили они; число 6 в их учении обладало особыми магическими свойствами. А ранние толкователи Библии объясняли, что мир был сотворен именно на шестой день, потому что число 6 - самое совершенное среди чисел, ибо оно первое среди них. Также многим казалось неслучайным, что Луна делает оборот вокруг Земли примерно за 28 дней.

Пятое совершенное число - 33 550 336 - было найдено только в XV веке. Еще почти через полтора века итальянец Катальди нашел шестое и седьмое совершенные числа: 8 589 869 056 и 137 438 691 328. Им соответствуют n = 17 и n = 19 в формуле Евклида. Обратите внимание, что счет идет уже на миллиарды, и страшно даже представить, что все вычисления были проделаны без калькуляторов и компьютеров!

Как мы знаем, Леонард Эйлер доказал, что любое четное совершенное число должно иметь вид 2 n –1 (2 n – 1), причем 2 n – 1 должно быть простым. Восьмое число - 2 305 843 008 139 952 128 - нашел тоже Эйлер в 1772 году. Здесь n = 31. После его достижений можно было осторожно сказать, что про четные совершенные числа науке стало что-то понятно. Да, они быстро растут, и их трудно вычислять, но хотя бы ясно, как это делать: надо брать числа Мерсенна 2 n – 1 и искать среди них простые. Про нечетные совершенные числа неизвестно почти ничего. На сегодняшний день не найдено ни одного такого числа, при том что проверены все числа до 10 300 (видимо, нижняя граница отодвинута даже дальше, просто соответствующие результаты еще не опубликованы). Для сравнения: число атомов в видимой части Вселенной оценивается величиной порядка 10 80 . При этом не доказано, что нечетных совершенных чисел не существует, просто это может быть очень большое число. Даже настолько большое, что наши вычислительные мощности никогда до него не доберутся. Существует ли такое число или нет - одна из открытых на сегодня проблем математики. Компьютерным поиском нечетных совершенных чисел занимаются участники проекта OddPerfect.org .

Вернемся к четным совершенным числам. Девятое число было найдено в 1883 году сельским священником из Пермcкой губернии И. М. Первушиным . В этом числе 37 цифр. Таким образом, к началу XX века было найдено всего 9 совершенных чисел. В это время появились механические арифметические машины, а в середине века - и первые компьютеры. С их помощью дело пошло быстрее. Сейчас найдено 47 совершенных чисел. Причем только у первых сорока известны порядковые номера. Еще про семь чисел пока точно не установлено, какие они по счету. В основном поиском новых мерсенновских простых (а с ними - и новых совершенных чисел) занимаются участники проекта GIMPS (mersenne.org).

В 2008 году участниками проекта было найдено первое простое число, в котором больше 10 000 000 = 10 7 цифр. За это они получили приз $100 000. Денежные призы 150 000 и 250 000 долларов также обещаны за простые числа, состоящие из больше чем 10 8 и 10 9 цифр соответственно. Предполагается, что из этих денег получат вознаграждение и те, кто нашел меньшие, но еще не открытые простые числа Мерсенна. Правда, на современных компьютерах проверка чисел такой длины на простоту займет годы, и это, наверное, дело будущего. Самое большое простое число на сегодня равно 2 43112609 – 1. Оно состоит из 12 978 189 цифр. Отметим, что благодаря тесту Люка-Лемера (см. его доказательство: A proof of the Lucas–Lehmer Test) сильно упрощается проверка на простоту чисел Мерсенна: не нужно пытаться найти хотя бы один делитель очередного кандидата (это очень трудоемкая работа, которая для таких больших чисел практически невыполнима сейчас).

У совершенных чисел есть забавные арифметические свойства:

  • Каждое четное совершенное число является также треугольным числом , то есть представимо в виде 1 + 2 + ... + k = k (k + 1)/2 для некоторого k .
  • Каждое четное совершенное число, кроме 6, является суммой кубов последовательных нечетных натуральных чисел. Например, 28 = 1 3 + 3 3 , а 496 = 1 3 + 3 3 + 5 3 + 7 3 .
  • В двоичной системе счисления совершенное число 2 n –1 (2 n – 1) записывается очень просто: сначала идут n единиц, а потом - n – 1 нулей (это следует из формулы Евклида). Например, 6 10 = 110 2 , 28 10 = 11100 2 , 33550336 10 = 1111111111111000000000000 2 .
  • Сумма чисел, обратных всем делителям совершенного числа (само число здесь тоже участвует), равна 2. Например, 1/1 + 1/2 + 1/4 + 1/7 + 1/14 + 1/28 = 2.

Наука и Жизнь 1981 №10

Каждый из нас чем-либо да увлекается. Одни коллекционируют марки, камни, спичечные коробки; другие столярничают или разводят цветы, третьи ломают голову над шахматными этюдами. А автор этих строк забавляется числами, преимущественно натуральными. Увлечению этому без малого полвека, а оно не слабеет, по-прежнему доставляет радость, приводит к неожиданным находкам. Получат ли эти находки практическое применение? Такие случаи у меня бывали. Будут ли дальше? Не знаю. Бенджамин Франклин на этот вопрос отвечает так: «А какое применение у новорожденного?» В самом деле, какое? Это покажет время. А пока расскажем об одной такой забаве, оканчивающейся довольно любопытно. И начнем издалека.

Возьмём любое многозначное натуральное число, вычислим сумму его цифр, потом вновь сложим цифры полученной суммы и будем повторять это до тех пор, пока не придем к однозначному числу. Его-то и назовём конечной суммой цифр заданного числа, а для краткости обозначим КСЦ.

Например, КСЦ числа 27816365 равна 2, так как 2+7+8+1+6+3+6+5=38, далее 3+8=11, наконец, 1+1=2.

Всякое натуральное число при делении на 9 даст в остатке КСЦ делимого. Если же число делится на 9 нацело, то, естественно, остаток равен нулю.

Пусть задано натуральное число:

10 n *a+10 n-1 *b+10 n-2 *c+...+10p+r.

Представим его в таком виде:

(10-1) n *а+(10-1) n-1 *b+(10-1) n-2 *c+...+ (10-1)*р+a+b+c+...+p+r.

Ясно, что слагаемые, содержащие множители вида (10-1) k , кратны девяти. Следующую за ними сумму цифр заданного числа (a+b+c...+p+r) также представим в виде:

(10-1) m *a 1 +(10-1) m-1 *b 1 +(10-1) m-2 *c 1 +...(10-1)*p 1 +a 1 +b 1 +c 1 +...+p 1 +r 1 (1)

Новая сумма цифр (a 1 +b 1 +c 1 +...+p 1 +r 1) уже меньше предыдущей. Продолжая этот процесс, мы непременно придём к остатку, который окажется числом однозначным, иначе говоря,- к КСЦ заданного числа.

Рассмотрим то же на вышепривдённом примере:

27816365=10*2+10*7+10*8+10*1+10*6+10*3+10*6+5=
=(10-1)*2+(10-1)*7+(10-1)*8+(10-1)*1+(10-1)*6+(10-1)*3+(10-1)*6+2+7+8+1+6+3+6+5.

Поэтому для вычисления КСЦ не обязательно складывать все цифры. Достаточно отбросить в числе все девятки: 2+7; 8+1; 6+3, а в оставшихся цифрах 6 и 5 остается отбросить 6+3. В результате получим КСЦ = 2.

Из этого следует, что разность между заданным числом (А) и его КСЦ всегда кратна девяти. Принято говорить, что А сравнимо с его КСЦ по модулю 9, а записывается это так:

А = КСЦ (mod 9), (1)

(здесь три чёрточки - знак сравнения).

Расположим теперь все натуральные числа в таблицу 1 так, чтобы в каждой строке их КСЦ была постоянна и равна крайнему левому числу строки.

1 10 19 28 37 46 55 64 73 ...
2 11 20 29 38 47 56 65 74 ...
3 12 21 30 39 48 57 66 75 ...
4 13 22 31 40 49 58 67 76 ...
5 14 23 32 41 50 59 68 77 ...
6 15 24 33 42 51 60 69 78 ...
7 16 25 34 43 52 61 70 79 ...
8 17 26 35 44 53 62 71 80 ...
9 18 27 36 45 54 63 72 81 ...

Таблица 1

Если обозначить числа первого столбца через a i (i=1..9) то любое число в i-й строке (А i) запишется так:

A i = a i (mod 9). (2)

Сравнения можно складывать (а следовательно, и перемножать и возводить в степень) как обычные равенства:

A 1 = a 1 (mod 9)
+
A 2 = a 2 (mod 9)

A 1 +A 2 = (a 1 +a 2) (mod 9) (3)

Докажем это. Из (3) следует, что

(A 1 -a 1)/9=B 1 , и (A 2 -a 2)/9=B 2

где B 1 и В 2 - числа натуральные. Значит, и сумма их также число натуральное. Отсюда и вытекает результат в равенстве (3).

Доказательства для произведения и степени вы легко найдете сами.

А вот примеры:

21 = 3 (mod 9)
+
32 = 5 (mod 9)
=
53 = 8 (mod 9),

21*32 = 15 (mod 9),
иначе
21*32 = 6 (mod 9).

Следовательно, для того, чтобы выяснить, в какой строке таблицы 1 помещается сумма (произведение, степень) натуральных чисел, достаточно сложить (перемножить, возвести в степень) их КСЦ.

Составим ещё таблицу (2) степеней, начиная с квадратов первых девяти натуральных чисел, а в скобках запишем их КСЦ.

Из таблицы 2 видно, что КСЦ в любой строке повторяется через каждые 6 степеней. Поэтому достаточно рассмотреть степени со второй по седьмую.

1 2 =1 (1) 1 3 =1 (1) 1 4 =1 (1) 1 5 =1 (1) 1 6 =1 (1) 1 7 =1 (1) 1 8 =1 (1)
2 2 =4 (4) 2 3 =8 (8) 2 4 =16 (7) 2 5 =32 (5) 2 6 =64 (1) 2 7 =128 (2) 2 8 =256 (4)
3 2 =9 (9) 3 3 =27 (9) 3 4 =81 (9 3 5 =243 (9) 3 6 =729 (9) 3 7 =2187 (9 3 8 =6561 (9)
4 2 =16 (7) 4 3 =64 (1) 4 4 =256 (4) 4 5 =1024 (7) 4 6 =4096 (1) 4 7 =16384 (4) 4 8 =65536 (7)
5 2 =25 (7) 5 3 =125 (8) 5 4 =625 (4) 5 5 =3125 (2) 5 6 =15625 (1) 5 7 =78125 (5) 5 8 =390625 (7)
6 2 =36 (9) 6 3 =216 (9) 6 4 =1296 (9) 6 5 =7776 (9) 6 6 =46656 (1) 6 7 =279936 (9) 6 8 =1679616 (9)
7 2 =49 (4) 7 3 =343 (1) 7 4 =2401 (7) 7 5 =16807 (4) 7 6 =117649 (1) 7 7 =423543 (7) 7 8 =5764801 (4)
8 2 =64 (1) 8 3 =512 (8) 8 4 =4096 (1) 8 5 =32762 (8) 8 6 =262144 (1) 8 7 =2097152 (8) 8 8 =16777216 (1)
9 2 =81 (1) 9 3 =729 (9) 9 4 =6561 (9) 9 5 =59049 (9) 9 6 =531441 (9) 9 7 =4782969 (9) 9 8 =43046721 (9)

Таблица 2

Много любопытного обнаруживается при сопоставлении первой и второй таблиц. Например: не существует степеней (кроме первой), для которых КСЦ равнялась бы трём или шести. КСЦ для шестых степеней равно только единице или девятке, а для третьих степеней - ещё и восьмерке. Для вторых и четвертых степеней КСЦ имеют одни и те же значения - 1, 4, 7, 9,- но четвёрки и семёрки у них поменялись местами.

Или вот ещё: КСЦ=2 встречается только дважды - у 5 5 и у 2 7 , а КСЦ=5 - также в двух случаях,- у 2 5 и 5 7 . Основания степеней в обоих случаях одинаковы, а показатели их поменялись местами.

Много чего можно отыскать в этих таблицах. Однако все это присказка, сказка впереди.

Немало времени прошло, пока не обнаружилось новое и, на мой взгляд, замечательное свойство таблицы 1. Оказалось, что все чётные совершенные числа (исключая шестёрки) располагаются только в ее первой строке. (Напомню: совершенными называются числа, равные сумме всех своих младших делителей). Иначе говоря, все (кроме первого) чётные совершенные числа (S) сравнимы с единицей по модулю 9:

Совершенные числа, о которых идет речь (а других мы не знаем), вычисляются по формуле Евклида:

S=2 p-1 (2 p -1) (5)

где и p, и (2 p -1) должны быть числами простыми. (Простыми называются числа, делящиеся только на себя и на единицу.)

Итак, перейдём к доказательству. Понятно, что число p, как всякое простое (кроме двойки), нечётно. Из таблицы 2 видно, что нечётный показатель степени у двойки может быть либо 3, либо 5, либо 7. При этом КСЦ этих степеней соответственно равны 8, 5 и 2. В таком случае КСЦ у (2 p -1) равны 7, 4 и 1. Что касается показателя степени у первого множителя в (5), то есть p-1, то он равен либо 2, либо 4, либо 6, а КСЦ этих степеней 2 p -1 равны соответственно 4, 7 и 1.

Остается перемножить КСЦ обоих сомножителей уравнения (5): 7*4; 4*7; 1*1, что даёт 28, 28 и 1. КСЦ всех этих трёх произведений равна 1. Что и требовалось доказать!

Так как мы не ставили никаких ограничений ни для множителя (2 p -1), ни для показателя p (кроме того, что он должен быть нечётным), то не только совершенные, но и все числа с нечётным p, вычисленные по формуле (5), расположены только в первой строке таблицы 1.

Не правда ли, любопытное свойство формулы Евклида?

Насколько мне известно, число приверженцев рубрики «Математические досуги», ведущейся в журнале вот уже почти 20 лет, не уменьшается, и среди них много таких читателей, кого интересуют забавы с числами. Тем же, кто ещё к этому не приобщился, советуем: играйте с числами! Не пожалеете!

§ 4. Совершенные числа

Нумерология (или гематрия, как ее иногда еще называют) была распространенным увлечением у древних греков. Естественным объяснением этому является то, что числа в Древней Греции изображались буквами греческого алфавита, и поэтому каждому написанному слову, каждому имени соответствовало некоторое число. Люди могли сравнивать свойства чисел, соответствующих их именам.

Делители или аликвотные части чисел играли важную роль в нумерологии. В этом смысле идеальными, или, как их называют, совершенными числами являлись такие числа, которые составлялись из своих аликвотиых частей, т. е. равнялись сумме своих делителей. Здесь следует отметить, что древние греки не включали само число в состав его делителей.

Наименьшим совершенным числом является 6:

За ним следует число 28:

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248.

Часто математик, увлеченный решением какой-либо проблемы и имеющий одно или несколько частных решений этой задачи, пытается найти закономерности, которые смогли бы дать ключ к нахождению общего решения. Указанные нами совершенные числа могут быть записаны в виде

6 = 2 3 = 2(2 2 - 1),

28 = 2 2 7 = 2 2 (2 3 - 1),

496 = 24 31 = 2 4 (2 5 - 1).

Это наталкивает нас на гипотезу:

Число является совершенным, если оно представляется в виде

Р = 2 p -1 (2 p - 1) = 2 р q , (3.4.1)

q = 2 p - 1

является простым числом Мерсенна.

Этот результат, известный еще грекам, несложно доказать. Делителями числа Р , включая само число Р , очевидно, являются следующие числа:

1, 2, 2 2 …, 2 р-1 ,

q , 2q , 2 2 q …, 2 р-1 q .

Запишем сумму этих делителей

1 + 2 +… + 2 р -1 + q (1 + 2 +… + 2 р -1),

которая равна

(1 + 2 +… + 2 р -1)(q + 1) = (1 + 2 +… + 2 р -1) 2 р

Если вы не помните формулы для суммы членов геометрической прогрессии,

S = 1 + 2 +… + 2 р -1 ,

то умножьте эту сумму на 2:

2S = 2 + 2 2 +… +2 р -1 + 2 р ,

а затем, вычтя S , получите

S = 2 p - 1 = q .

Таким образом, сумма всех делителей числа Р есть

2 p q = 2 2 p -1 q,

а сумма всех делителей, кроме самого числа Р = 2 p -1 q , равна

2 2 p -1 q - 2 p -1 q = 2 p -1 q = Р.

Итак, наше число является совершенным.

Из этого результата следует, что каждое простое число Мерсенна порождает совершенное число. В § 2 второй главы говорилось, что известно всего 23 простых числа Мерсенна, следовательно, мы знаем также и 23 совершенных числа. Существуют ли другие виды совершенных чисел? Все совершенные числа вида (3.4.1) являются четными, можно доказать, что любое четное совершенное число имеет вид (3.4.1). Остается вопрос: существуют ли нечетные совершенные числа? В настоящее время мы не знаем ни одного такого числа, и вопрос о существовании нечетных совершенных чисел является одной из самых знаменитых проблем теории чисел. Если бы удалось обнаружить такое число, то это было бы крупным достижением. Вы можете поддаться соблазну найти такое число, перебирая различные нечетные числа. Но мы не советуем этого делать, так как по последним сообщениям Брайена Такхермана из IBM (1968), нечетное совершенное число должно иметь по крайней мере 36 знаков.

Система задач 3.4.

1. Используя список простых чисел Мерсенна, найдите четвертое и пятое совершенные числа.

Из книги Искатели необычайных автографов автора Левшин Владимир Артурович

ЧИСЛА, ЧИСЛА, ЧИСЛА… - Есть такая книга, - начал Мате, - «Диалоги о математике». Написал ее выдающийся венгерский математик нашего века Альфред Реньи. Форма диалога выбрана им не случайно, как не случайно, вероятно, обратился к ней когда-то Галилео Галилей.Жанр диалога

Из книги Приглашение в теорию чисел автора Оре Ойстин

§ 4. Фигурные числа В теории чисел мы часто встречаемся с квадратами, т. е. такими числами, как32 = 9, 72 = 49, 102 = 100,и аналогично с кубами, т. е. такими числами, как23 = 8, 33 = 27, 53 = 125. Рис. 2.Этот геометрический образ рассматриваемой операции с числами является частью богатого

Из книги Научные фокусы и загадки автора Перельман Яков Исидорович

ГЛАВА 2 ПРОСТЫЕ ЧИСЛА § 1. Простые и составные числа Должно быть, одним из первых свойств чисел, открытых человеком, было то, что некоторые из них могут быть разложены на два или более множителя, например,6 = 2 3, 9 = 3 3, 30 = 2 15 = 3 10,в то время как другие, например,3, 7, 13, 37,не

Из книги Апология математики, или О математике как части духовной культуры автора Успенский Владимир Андреевич

§ 2. Простые числа Мерсенна В течение нескольких столетий шла погоня за простыми числами. Многие математики боролись за честь стать открывателем самого большого из известных простых чисел. Разумеется, можно было бы выбрать несколько очень больших чисел, не имеющих таких

Из книги Математика любви. Закономерности, доказательства и поиск идеального решения автора Фрай Ханна

§ 3. Простые числа Ферма Существует также еще один тип простых чисел с большой и интересной историей. Они были впервые введены французским юристом Пьером Ферма (1601–1665), который прославился своими выдающимися математическими работами. Первыми пятью простыми числами

Из книги Тайная жизнь чисел [Любопытные разделы математики] автора Наварро Хоакин

§ 5. Дружественные числа Дружественные числа также входят в наследство, доставшееся нам от греческой нумерологии. Если у двух людей имена были таковы, что их числовые значения удовлетворяли следующему условию: сумма частей (делителей) одного из них равнялась второму

Из книги Том 9. Загадка Ферма. Трехвековой вызов математике автора Виолант-и-Хольц Альберт

§ 2. Взаимно простые числа Число 1 является общим делителем для любой пары чисел а и b. Может случиться, что единица будет единственным их общим делителем, т. е.d0 = D(a, b) = 1. (4.2.1)В этом случае мы говорим, что числа а и b взаимно простые.Пример. (39, 22) = 1.Если числа имеют общий

Из книги автора

§ 1. Числа «Все есть число» - учили древние пифагорейцы. Однако количество чисел, которыми они пользовались, ничтожно по сравнению с фантастической пляской цифр, окружающих нас сегодня в повседневной жизни. Огромные числа появляются, когда считаем мы, и тогда, когда

Из книги автора

44. Какие числа? Какие два целых числа, если их перемножить, составят семь?Не забудьте, что оба числа должны быть целые, поэтому такие ответы, как З1/2 ? 2 или 21/3 ? 3, не

Из книги автора

47. Три числа Какие три целых числа, если их перемножить, дают столько же, сколько получается от их Из книги автора

Магические числа Как и во многих ранее проведенных опросах, выяснилось, что среднее число сексуальных партнеров в течение жизни респондентов относительно невелико: примерно семь для гетеросексуальных женщин и примерно тринадцать для гетеросексуальных мужчин.

Из книги автора

Глава 1 Числа Альберт! Перестань указывать Богу, что Ему делать! Нильс Бор - Альберту Эйнштейну Вначале были число и фигура. Когда человек попытался овладеть ими, родилась наука, и человек начал познавать окружающий мир. Развитие науки часто сопровождалось забавными,

Из книги автора

Приложение Фигурные числа Фигурное число - это число, которое может быть представлено в виде точек, расположенных в форме правильного многоугольника. Эти числа долгое время служили объектом пристального внимания математиков. Греки приписывали им магические свойства,

Число 6 делится на себя, а также на 1, 2 и 3, и 6 = 1+2+3.
Число 28 имеет пять делителей, кроме самого себя: 1, 2, 4, 7 и 14, причем 28 = 1+2+4+7+14.
Можно заметить, что далеко не всякое натуральное число равно сумме всех своих делителей, отличающихся от этого числа. Числа, которые обладают этим свойством были названы совершенными.

Ещё Евклидом (3 в. до н. э.) было указано, что чётные совершенные числа можно получить из формулы: 2 p –1 (2 p – 1) при условии, что р и 2 p есть числа простые. Таким путём было найдено около 20 чётных совершенных числа. До сих пор неизвестно ни одного нечётного совершенного числа и вопрос о существовании их остаётся открытым. Исследования таких чисел были начаты пифагорейцами, приписывавшими им и их сочетаниям особый мистический смысл.

Первое самое меньшее совершенное число – это 6 (1 + 2 + 3 = 6).
Может быть, именно поэтому шестое место считалось самым почетным на пирах у древних римлян.

Второе по старшинству совершенное число – это 28 (1 + 2 + 4 + 7 + 14 = 28).
В некоторых ученых обществах и академиях полагалось иметь 28 членов. В Риме в 1917 г. при выполнении подземных работ обнаружилось помещение одной из древнейших академий: зал и вокруг него 28 кабинетов – как раз по числу членов академии.

По мере того как натуральные числа возрастают, совершенные числа встречаются всё реже. Третье совершенное число – 496 (1+2+48+16+31+62+124+248 = 496), четвёртое – 8128 , пятое – 33 550 336 , шестое – 8 589 869 056 , седьмое – 137 438 691 328 .

Первые четыре совершенные числа: 6, 28, 496, 8128 были обнаружены очень давно, 2000 лет назад. Эти числа приведены в Арифметике Никомаха Геразского, древнегреческого философа, математика и теоретика музыки.
Пятое совершенное число было выявлено в 1460 г, около 550 лет тому назад. Это число 33550336 обнаружил немецкий математик Региомонтан (XV век).

В XVI веке также немецкий ученый Шейбель нашел еще два совершенных числа: 8 589 869 056 и 137 438 691 328 . Они соответствуют р = 17 и р = 19. В начале XX века были найдены ещё три совершенных числа (для р = 89, 107 и 127). В дальнейшем поиск затормозился вплоть до середины XX века, когда с появлением компьютеров стали возможными вычисления, превосходившие человеческие возможности. Пока известно 47 чётных совершенных чисел.

Совершенный характер чисел 6 и 28 был признан многими культурами, обратившими внимание на то, что Луна совершает оборот вокруг Земли каждые 28 дней, и утверждавшими, что Бог сотворил мир за 6 дней.
В сочинении «Град Божий» Св. Августин высказал мысль о том, что хотя Бог мог сотворить мир в одно мгновенье, Он предпочел сотворить его за 6 дней, дабы поразмыслить над совершенством мира. По мнению Св. Августина, число 6 совершенно не потому, что Бог избрал его, а потому, что совершенство внутренне присуще природе этого числа. «Число 6 совершенно само по себе, а не потому, что Господь сотворил все сущее за 6 дней; скорее наоборот, Бог сотворил все сущее за 6 дней потому, что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за 6 дней».

Лев Николаевич Толстой не раз шутливо "хвастался" тем, что дата
его рождения 28 августа (по календарю того времени) является совершенным числом.
Год рождения Л.Н. Толстого (1828)– тоже интересное число: последние две цифры (28) образуют совершенное число; если обменять местами первые цифры, то получится 8128 – четвертое совершенное число.

Последние материалы раздела:

Что обозначают цифры в нумерологии Цифры что они означают
Что обозначают цифры в нумерологии Цифры что они означают

В основе всей системы нумерологии лежат однозначные цифры от 1 до 9, за исключением двухзначных чисел с особым значением. Поэтому, сделать все...

Храм святителя Николая на Трех Горах: история и интересные факты Святителя николая на трех горах
Храм святителя Николая на Трех Горах: история и интересные факты Святителя николая на трех горах

Эта многострадальная церковь каким-то удивительным образом расположилась между трех переулков: Нововоганьковским и двумя Трехгорными. Храм...

Дмитрий Волхов: как увидеть свое будущее в воде Как гадать на воде на любовь
Дмитрий Волхов: как увидеть свое будущее в воде Как гадать на воде на любовь

Гадание на свечах и воде относится к древним ритуалам. Не все знают, что вода это мощная и загадочная субстанция. Она способна впитывать...